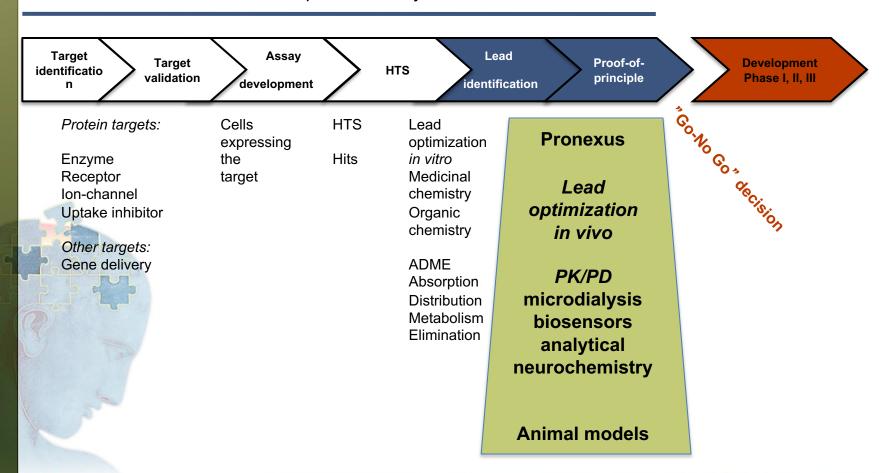
Pronexus Analytical AB

Pronexus Analytical AB (Inc.) was founded in 2003 by Professors Urban Ungerstedt, Kjell Fuxe and Jan Kehr as a spin-off company linked to the Karolinska Institutet Science Park in Stockholm.

Mission statement


Pronexus Analytical AB is an independent preclinical contract research organization (CRO) offering advanced services and collaborative projects focused on PK/PD studies using microdialysis and neurochemical monitoring in rodent models of CNS and metabolic disorders. The bioanalytical services include UHPLC-MS/MS, standard HPLC techniques, enzyme assays and immunoassays.

Pronexus research laboratories with full regulatory approvals include the central bioanalytical laboratory and the animal research facility.

Pronexus expertise in CNS drug discovery

Preclinical phase 5 – 6 years

Rodent models

Psychiatric and neurodegenerative diseases

- Depression, ADHD
- Schizophrenia
- Drug abuse liability, NPS
- Parkinson´s disease
- Alzheimer´s disease, cognitive function
- Huntington´s disease

Metabolic and rare disorders

- Gaucher disease, Niemann-Pick type C disease
- Hepatic encephalopathy, CYP450-selective probe drugs

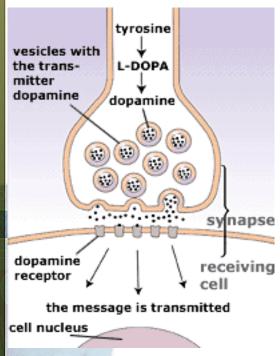
Pronexus Analytical - core expertise

Preclinical research: Experimental models

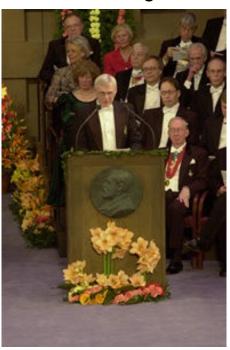
- Microdialysis protocols on anesthetized or awake rats and mice
- Microsurgery, stereotaxic surgery on small rodents
- Simultaneous microdialysis and behavioral monitoring
- Targeted pharmacokinetics and drug brain delivery
- Behavioral tests

Analytical services

- UHPLC-MS/MS techniques optimized for determination of neurotransmitters, neuromodulators, metabolites and related molecules in the microdialysates and other biological samples
- UHPLC-MS/MS for PK/TK studies
- Chiral separations
- HPLC methods with electrochemical, fluorescence, UV, conductivity detection
- ELISA VIS, FL, LM, TRF mode
- Enzymatic spectrophotometric assays for clinical microdialysates



Historical link between microdialysis and dopamine research


Nobel Prize in Physiology or Medicine 2000 for discovery of the neurotransmitter dopamine

Prof. Arvid Carlsson

Prof. Urban Ungerstedt

Prof. Urban Ungerstedt who pioneered the microdialysis technique and a member of the Nobel Committee at that time, delivering the Presentation Speech for the 2000 Nobel Prize in Physiology or Medicine at the Stockholm Concert Hall.

Analytical services

HPLC, UHPLC-MS/MS

Small-molecular test compounds, pharmaceuticals, nutraceuticals, toxins

Monoamines: Dopamine, Noradrenaline, Serotonin, Histamine

Acetylcholine, Choline

Amino acids: Glu, Asp, GABA, Gly, D-Ser, physiological AAs

Adenosine (and other purines), cAMP

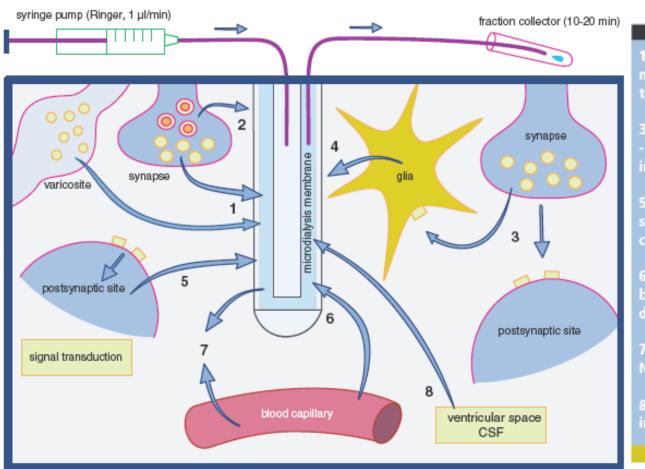
Kynurenine, Kynurenic acid, Quinolinic acid, related metabolites

Reactive oxygen species (ROS)

Glucose, lactate, pyruvate, glycerol

Amino acids - primary and secondary

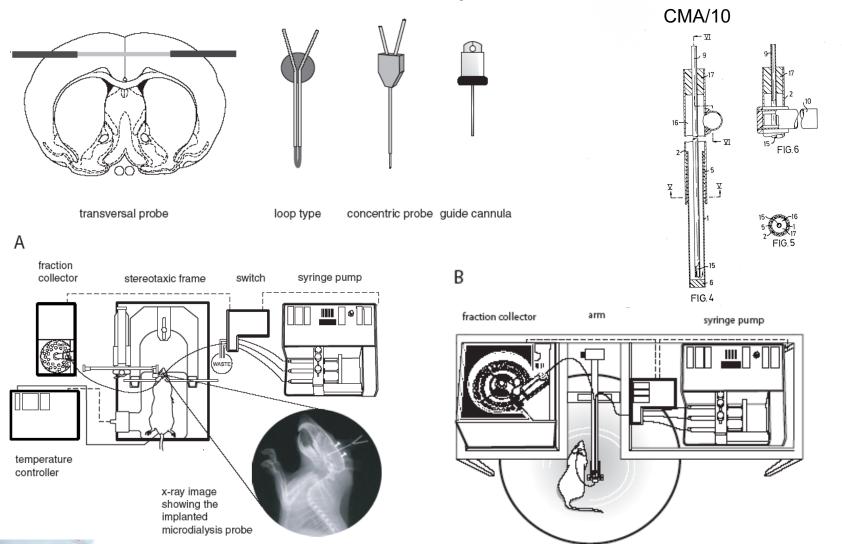
Gaseous messengers: NO (NO₂-, NO₃-)


Hexosylsphingolipids: GlcCer, GalCer, GlcSph, GalSph

EIA, ELISA

Neuropeptides; proteins - fragments; soluble forms of $A\beta$ peptides Cytokines, interleukins, trophic factors, hormones, growth factors

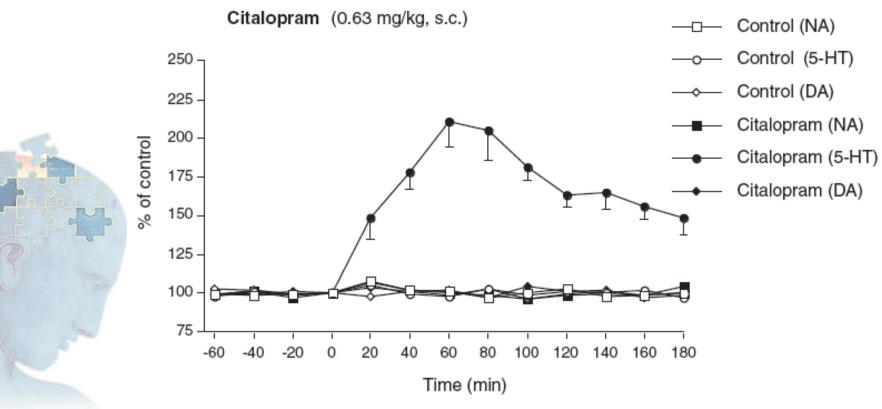
Sampling molecules in the brain microenvironment by microdialysis



- 1,2,3. Presynaptic levels release of neurotransmitters, neuromodulators and neuropeptides.
- 3, 4. Neuron-glia interactions sampling glutamate, GABA, interleukins, trophic factors.
- Signal transduction monitoring second messengers such as cAMP, cGMP.
- Molecules transported from blood capillaries - glucose, nutrients, drugs.
- 7. Neuro-vascular communication, NO, nitrite, nitrate.
- Molecules transported from, or into the CSF.

J. Kehr and T. Yoshitake, In: Encyclopedia of sensors, Ed.G.A. Grimes, ACS (2006) Vol 6, pp. 287-311.

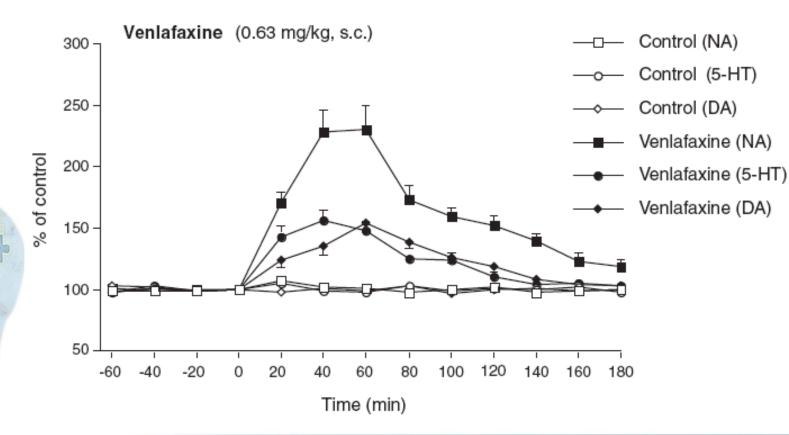
Instruments and devices for microdialysis



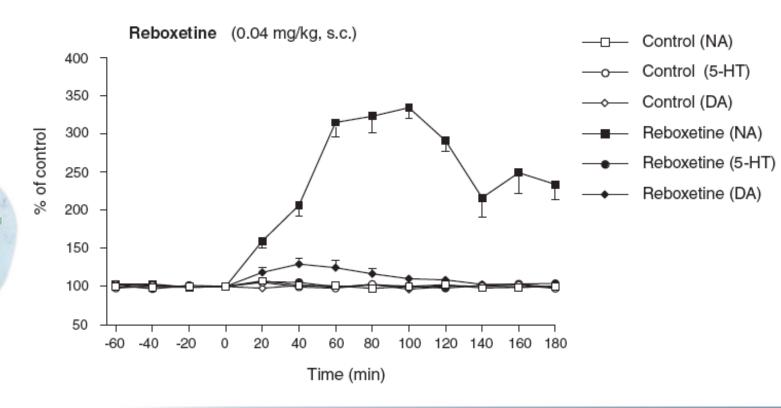
Kehr J. (1999) Monitoring chemistry of brain microenvironment: biosensors, microdialysis and related techniques. Chapter 41. In: Modern techniques in neuroscience research. (Eds. U. Windhorst and H. Johansson) Springer-Verlag GmbH., Heidelberg, Germany. 1149-1198.

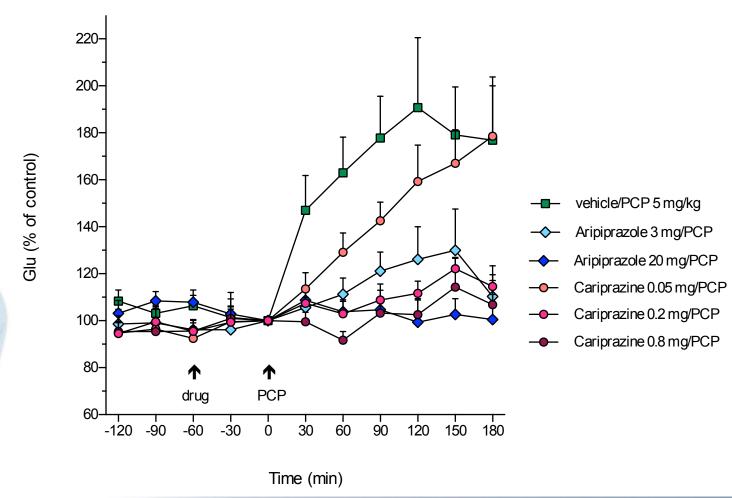
Microdialysis - a major tool in functional pharmacology

- accelerates the process of drug discovery and strengthens functional validation of candidate drugs

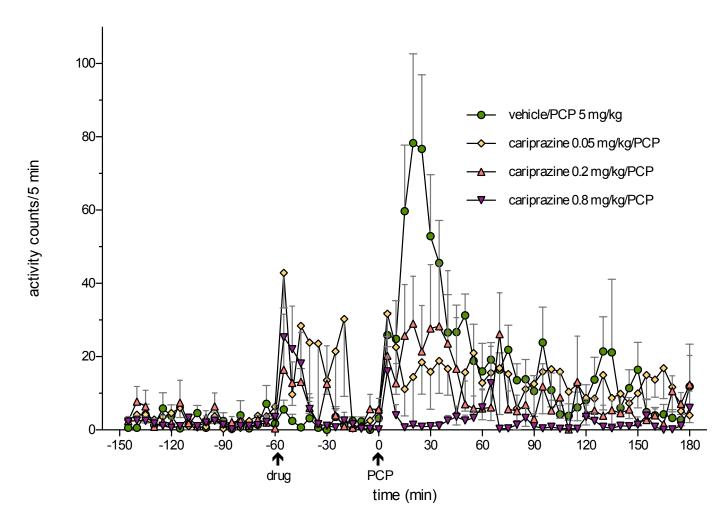

Effect of chronic (14 days/once daily) treatment with SSRI citalopram on levels of monoamines NA, DA and 5-HT in the mPFC of awake rat

Microdialysis - a major tool in functional pharmacology

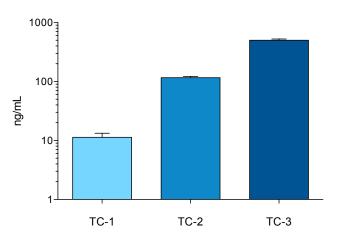

Effect of chronic (14 days/once daily) treatment with NSRI venlafaxine on levels of monoamines NA, DA and 5-HT in the mPFC of awake rat

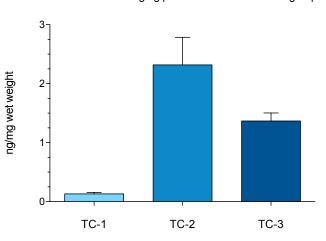

Microdialysis - a major tool in functional pharmacology

Effect of chronic (14 days/once daily) treatment with NRI reboxetine on levels of monoamines NA, DA and 5-HT in the mPFC of awake rat



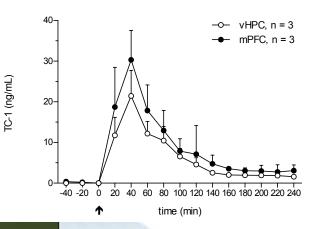
Phencyclidine rat model of schizophrenia: Effects of aripiprazole and cariprazine on extracellular levels of glutamate in mPFC of awake rat

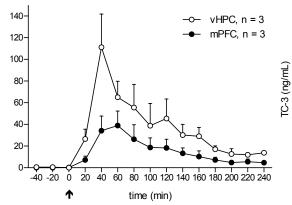

Effect of cariprazine (Vraylar) on PCP-induced increase in locomotor activity

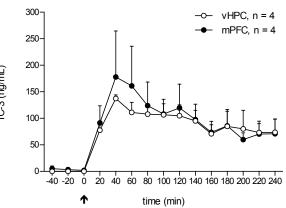


PK/PD study of three test compounds by use of dual-probe microdialysis

Plasma concentrations of 3 test compounds (TC) 4 hours after 30 mg/kg p.o. administration in each group

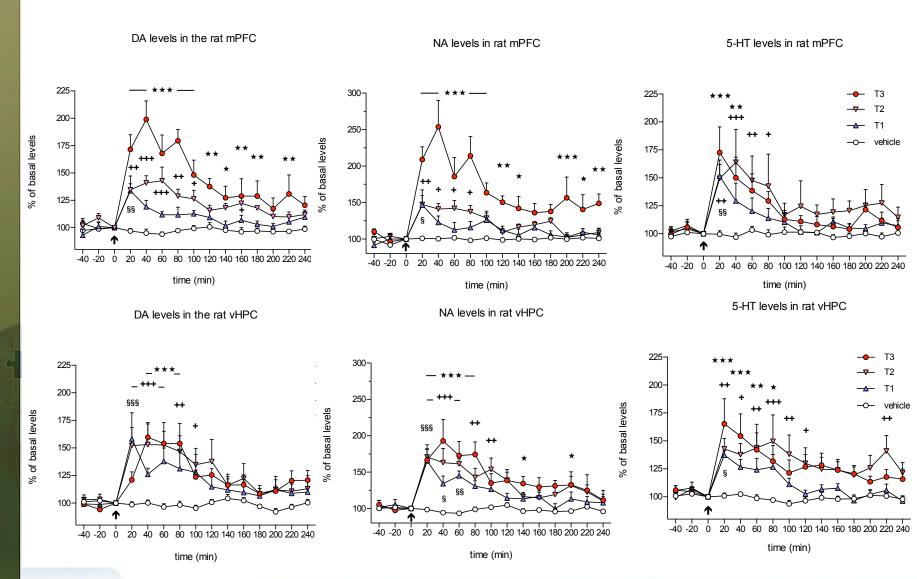



Concentrations of 3 test compounds (TC) in rat frontal cortex 4 hours after 30 mg/kg p.o. administration in each group



Concentrations of TC-1 in the microdialysates from rat vHPC and mPFC centrations of TC-2 in the microdialysates from rat vHPC an

Concentrations of TC-3 in the microdialysates from rat vHPC and mPFC

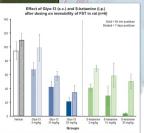


PK/PD study of three test compounds by use of dual-probe microdialysis

Rapastinel (Glyx-13), a Rapid Acting Antidepressant, Does Not Increase Extracellular Levels of Dopamine and Glutamate in Rat Medial Prefrontal Cortex

Pradeep Banerjee¹, John Donello¹, Takashi Yoshitake², Jan Kehr³

¹Allergan, Inc., Jersey City, New Jersey, USA; ²Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden; ³Pronexus Analytical AB, Stockholm, Sweden


ABSTRACT

modulator with glycine-like partial agonist properties. Rapastine mimetic effects in animals and humans. Both ketamine

(a) decreased immobility time in the rat FST when tested at 1-hr mPEC within the first 60 min of dosing. By contrast, rapastinel did

pasis for rapastinel's favorable CNS adverse effects compared amine may play a significant role in its high abuse potential and

nt-like effects in the rat FST idepressant effects of rapastinel at 60 min postdose (solid bars)

of rat medial prefrontal cortex (mPFC) after a single SC dose of rapastinel (3 or 10 or 30 mg/kg). FCS levels of rapastinel increased within 20 min postdose and dissipated rapidly (within 60-80 min postdose). Note: the antidepressant effects of rapastinel was rapastinel at 10 or 30 mg/kg is ~10 ng/mL (25 nM) or ~40 ng/ mL (98 nM); in the calcium imaging studies, NMDAR activation by rapastinel is observed at 30-300 nM, suggesting that the antidepressant effect of rapastinel is mediated by NMDAR activation Rapastinel in the dialysate was measured using a HPLC-MS/MS

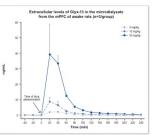


Figure 3: Representative photomicrograph of a dialysis probe placed in mPFC of a rat (panel A); panel B shows a schematic illustration of a dialysis probe in the mPFC area (cingulate cortex =

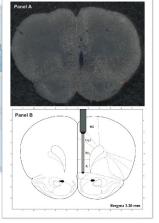


figure 4A and relative AUC_{0-240min} in figure 4B using intracerebral microdialysis in freely moving rats). Rapastinel (3, 10 or 30 mg/kg) did not increase DA levels in mPFC. These data suggest that rapastinel does not possess ketamine-like rewarding effects and may provide a mechanistic basis for our earlier observation that rapastinel lacks reinforcing potential in monkeys trained to abuse cocaine (unpublished

Figure 4B: Extracellular levels of DA in mPFC (Relative AUC_{0-240min}) (%); ****p< 0.01

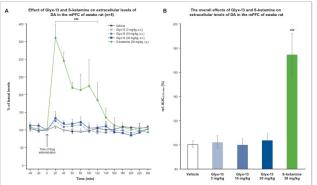
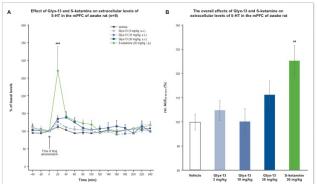



Figure 5A: S-ketamine (30 mg/kg) produced significant increases in 5-HT levels in mPFC (evaluated as % increase over baseline in figure 5A and relative AUC_{0-240min} (%) in figure 5B using intracerebral microdialysis in freely moving rats). Rapastinel (3, 10 or 30 mg/kg) did not increase 5-HT levels in mPFC: ###p< 0.01

Figure 5B: Extracellular levels of 5-HT in mPFC (Relative AUC_{0.240min}) (%); #Vp< 0.05

6A and relative AUC_{0-240min} (%) in figure 6B using intracerebral microdialysis in freely moving rats). Rapastinel (3, 10 or 30 mg/kg) did not increase GLU levels in mPFC. These data provide a mechanistic explanation for the observed psychotomimetic-like effects of ketamine, and lack of such effects by rapastinel in rodents (Moskal et al., 2014)

Figure 6B: Extracellular levels of GLU in mPFC (relative AUC_{0-240min} (%)

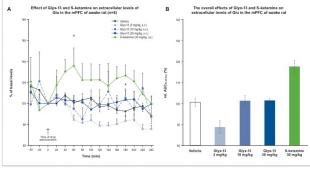


Figure 7: Neither S-ketamine (30 mg/kg) nor rapastinel (3, 10 or 30 mg/kg SC) altered the extracellular levels of GABA in mPFC.

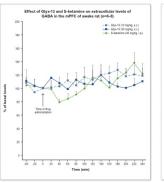
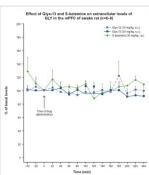
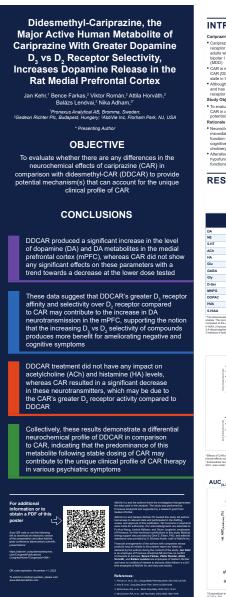



Figure 8: Neither S-ketamine (30 mg/kg) nor rapastinel (3, 10 or 30 mg/kg SC) altered the extracellular levels of glycine in mPFC.

DISCLOSURE


To obtain a PDF of this posts · Scan the QR code

Annual Meeting of the American College of Neuropsychopharmacology (ACNP) • December 4-8, 2016 • Hollywood, Florida

Poster presented at the ACNP meeting, Phoenix, Arizona, December 8-11, 2024

INTRODUCTION

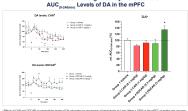
 Cariprazine (CAR) is a dopamine (DA) D₃-preferring D₃/D₂ and serotonin 5-HT_{1A}
receptor partial agonist approved by the US Food and Drug Administration to treat
adults with schizophrenia, manic, mixed, and depressive episodes associated with bipolar I disorder as well as adjunctive treatment for major depressive disorder (MDD)

- CAR is metabolized to desmethyl-CAR (DCAR) and ultimately to didesmethyl CAR (DDCAR) with DDCAR being the prominent moiety (~ 70% of total) at steady
- CAR (QUICAR) with DUCAR being in prominent molety (* 7/3° cr 10sa) at steady state in humans.

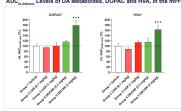
 * Although in general, DDCAR displays comparable in vitro binding receptor profile and has a similar antipsychotic-like activity as CAR, this metabolite has greater D3 receptor (D;R) affinity and selectivity compared to the parent? Study Objective
- . To evaluate whether there are any differences in the neurochemical effects of CAR in comparison with DDCAR, which is more D₃ receptor-preferring, to provide potential mechanism(s) that can account for the unique clinical profile of CAR
- . Neurochemical effects of CAR and DDCAR were evaluated in rats using Neurochemical effects of CAR and DDCAR were evaluated in rats using microdalysis probing in the mPFC, a brain area of importance with dysegulated function in various psychiatric and cognitive disorders. The negative and/or cognitive symptoms of schizophrenia may be due to reduced dopaminergic and/or cholinergic tone in cortical brain areas.³¹
 Alteration in the function of obspamine D, receptors may play a role in this cortical
- hypofunctionality and underlie the deficits in social behaviors and cognitive functions in various mood disorders⁵

METHODS

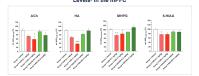
- Neurochemical effects of CAR and DDCAR were evaluated in rats (male Sprague-Dawley rats weighing 300-320 g, N = 49) using microdialysis probing in the mPFC
- Seven days before the microdialysis experiment, the rats were pretreated with buprenorphine and carprofen, anesthetized with isoflurane, and the guide cannulas were stereotaxically implanted into the mPFC. On the day
- anesthetical with inclinane, and the guide cannulas were steriotaxically implanted into the mPFC. On the day of experiment, the separate groups of a suice rate were breaded with CAR and DDCAR, and the samples were of experiment of the separate groups of suice rate were breaded with CAR and DDCAR, and the samples were "Microbially size supplies concentrations of responsations to the contract of t CAR and DDCAR in the remaining volumes of the microdialysates were measured by LIHPLC-MS/MS
- The values were presented as mean ± statistically significant at the P < .05 level
- The data was expressed as percentage of the basal concentrations and as relative area-under-the curve AUC (0-340 mile) values


 • The mean basal levels in the control and treated groups and the relative AUC (0-340 mile) values were compared
 by use of one-way analysis of variance (ANOVA) followed by Tukey's and Dunnett's multiple comparison tes

RESULTS

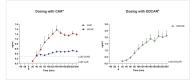

Basal Levels^a of Neurotransmitters, Neuromodulators and Monoamine Metabolites in the mPFC of Awake Rats

	Group 1 Vehicle	CAR 0.1 mg/kg	CAR 1 mg/kg	DDCAR 0.3 mg/kg	DDCAR 3 mg/kg
DA	0.287 ± 0.0203	0.305 ± 0.0495	0.336 ± 0.0747	0.414 ± 0.0241	0.083 ± 0.0431*
NE	0.675 ± 0.0872	0.455 ± 0.0487	0.493 ± 0.1196	0.773 ± 0.0997	0.468 ± 0.1671
5-HT	1.304 ± 0.3596	0.472 ± 0.0635	0.521 ± 0.0749	0.91 ± 0.2649	0.438 ± 0.0275
ACh	3.682 ± 0.5321	3.483 ± 0.4804	4.505 ± 0.9361	3.722 ± 0.3429	3.245 ± 0.8793
HA	5.844 ± 0.3934	13.30 ± 4.681	6.131 ± 1.06	66.60 ± 22.72**	12.39 ± 2.694
Glu	353.5 ± 69.5	955.4 ± 244.5	1199 ± 418.1	523.6 ± 93.7	1196 ± 422.5
GABA	28.80 ± 6.91	42.56 ± 11.08	47.12 ± 5.01	54.39 ± 3.68	54.86 ± 11.56
Gly	3305 ± 1305	4098 ± 1416	7139 ± 1183	2408 ± 589	4611 ± 1093
D-Ser	2152 ± 168.9	2123 ± 160.4	1873 ± 155.5	1798 ± 304.7	2300 ± 95.5
MHPG	20.48 ± 2.821	27.26 ± 4.096	31.72 ± 4.073	23.09 ± 2.635	32.21 ± 4.585
DOPAC	43.17 ± 7.418	30.99 ± 3.948	58.29 ± 11.78	39.48 ± 7.938	52.19 ± 6.850
HVA	24.83 ± 4.162	26.85 ± 3.543	98.48 ± 37.18*	59.53 ± 10.99	111.5 ± 11.35*
5-HIAA	174.6 ± 35.45	212.8 ± 56.22	295.9 ± 81.69	171.2 ± 20.28	338.4 ± 45.71


DDCAR but not CAR Significantly Increased the

DDCAR but not CAR Significantly Increased the Levels of DA Metabolites, DOPAC and HVA, in the mPFC

CAR Caused Significant Decreases in the Neurotransmitters, ACh and HA, and Monoamine Metabolites, MHPG and 5-HIAA, Levels^a in the mPFC



Summary^a of CAR and DDCAR Effects in the mPFC

- Besides the observed effects on DA and its metabolites, the higher dose of CAR caused significan decreases in ACh, HA, MHPG, and 5-HIAA levels

The Extracellular Levels of CAR and its Metabolite DCAR Gradually Increased in the mPFC and Remained Elevated Over the Entire 240-minute Sampling Period With DDCAR Being BLD

Summary

Pronexus Analytical AB

- A unique portfolio of services including in vivo microdialysis and neurochemical analysis for evaluation of test substances in rodent models
- Expertise in pharmacology of major neurotransmitter systems, combined academic/industrial background
- International reputation, affiliation to Karolinska Institutet and Uppsala University
- A potential to expand, offering specialized PK/PD studies, in vitro and analytical CRO services
- Microdialysis in other organs/models: skin, muscle, liver, lung